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ABffrRACT. A rigorous modal analysis of lameUar gratings, i.e.,

gratings having rectangular grooves, in conical mountings is presented. It is

an extension of the analysis of Botten et al. which considered non-conical

mountings. A key step in the extension is a decomposition of the

electromagnetic field in the grating region into two orthogonal components.

A computer program implementing this extended modal analysis is capable of

dealing with plane wave diffraction by dielectric and metallic gratings with

deep grooves, at arbitrary angles of incidence, and having arbitrary incident

polarizations. Some numerical examples are included.

1. INTRODUCTION

The modal approach has been applied by many authors to lamellar, non-perfectly

conducting gratings in the past [1-10]. Most noticeably, Botten et al. [5-7] presented a series

of three papers, in 1981, on the modal analysis of dielectric, finitely conducting, and highly
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conducting lamellar gratings. Their work was later formulated in a more systematic way, and

its certain numerical aspects were improved, by Suratteau et al. [8] and by Tayeb and Petit

[9]. However, these analyses are limited to non-conical mountings. In many applications,

lameUar gratings are used in conical mountings [11]. Recently, a modal analysis of lamellar

gratings in conical mountings was presented by Peng [12].

The present work differs substantially from that of Peng [12] in mathematical

formulation and numerical implementation. In Peng's work, the validity of the

decomposition of the electromagnetic field in the corrugated region into two orthogonal

components is assumed without proof. The eigen-functions (the modal fields in the

corrugated region) for a grating in a conical mountings are constructed by geometrical means

from the TE and TM eigen-functions for the grating in a equivalent non-conical (also called

classical) mounting. The completeness and orthogonality of the eigen-functio_ assembled

in this manner are not addressed. In this paper, the eigen-functions along with their

completeness and orthogonality are derived rigorously and systematically from the boundary-

value problems.

The present work can be considered as an extension of the works of Botten et al. and

Suratteau et al. to conical mountings. A key step in its development is the proof of the field

decomposition mentioned above. Once this is done, the task of finding eigenvalues and

eigen-functions for a conical mounting reduces to that of a classical mounting, and the

previous results of the above authors, including their powerful and sophisticated numerical w
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methods for finding the eigenvalues, can be used.

The mathematical formulation of the modal analysis is presented in section 2, and the

numerical aspects of the analysis are addressed in section 3. Section 4 provides some

numerical results. The validity of the field decomposition is proved in Appendix A. For the

sake of the normal flow of the paper, some of the results available in Ref. 5-9 are re-stated

in sections 2 and 3, but often are formulated differently. In other instances, the reader is

referred to the original references.

2. MATHEMATICAL FORMULATION

2.1. Notation

A lameUar grating in a conical diffraction configuration is depicted in Fig. 1. The

coordinate system is chosen such that the x-axis is perpendicular to, and the z-axis is parallel

to, the grating grooves, and the y-axis is the normal of the overall structure. A

monochromatic plane wave of vacuum wavelength _.0 is incident on the lameUar grating at

a polar angle 8 and an azimuthal angle _. The range of e is 0 < 8 < ,,./2 and that of ¢

is -_r < ¢_ g _r, with the clockwise direction being the positive direction for ¢. The same

conventions will be used for the diffracted waves that are not shown. The incident

polarization is in general eUiptical.

The geometry of the lamellar grating is shown in Fig. 2. The grating period is d, and

the widths of medium 1 and medium 2 are d 1 and d z. We shall call the regions of space
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where y > h/2, y < - h/2, and - hi2 < y < h/2, regions 1, 2, and 0, respectively, where h is

the grating groove depth. We shall use the superscript (/), where j ffi 1, 2, to denote

quantities associated with regions j and the subscript j to denote quantities associated with

the two media in region 0. Thus, the permittivity and permeability of the medium in region

1 are e (t) and _0), and those in region 2 are e (2) and _(2). The permittivity and permeability

of region O arepefiodicfunctionsofx,

E(x) =e I, _(x) = _l,

e(x) =_, _(x)=.2,

Ixl<dtl2, "t

fdtl2< Ixl<d12.

(1)

Although for most optical applications, the permeability is a constant and equals that of the

vacuum, to reveal the symmetry of the electric and magnetic fields, _1 and/_ are formally

assumed to be different. The Gaussian system of units is used in this paper.

Let/c o be the magnitude of the vacuum wave-vector.

vector in regions j ffi 1, 2 and region 0 are denoted by kO3and k(x),

The magnitudes of the wave-

(2)

(3)

The wave-vector of the inddent plane wave is

k"- km(_sinOco_ - _,x_ + tsiaesin_).

We denote the z-component of the incident wave-vector by kz,

k+= k°>sin8 sia_.

and we define the reduced magnitudes of the wave-vectors by _3 and _:(x),

(4)

(5)

V
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(6)

(7)

Since the physical problem is time and z-invariant, the electromagnetic field may be

assumed to be of the form

£(x,y,z,t) - _x,y) e i_'"*' , (8a)

H(x,y,z,O " l'?(x,y) e t_''t. (8b)

Throughout this paper, i -- ,/-1. Substituting (Sa) and (fro) into Maxwell's equations, we

may express the transverse components of the electromagnetic field in terms of the

longitudinal (z) components,

_,(x,,y) -
_¢2(x) [ k z VtEz(x,y) - _ 8 x VtHz(x,y) ], (9a)

R,(x,y) .
IE2(x) [ kz V, Hz(x,y) + ek08×V,E=(x,y)], (9b)

where V, = .tt_ + p_ So in solving the conical diffraction problem, it is only necessary to

work with the z-components of the electric and magnetic fields.

As usual, the fields above and below the corrugated region may be written in

Rayleigh expamiom [13]:

g(x_) - ,<+e''.'''p<'' + _, _+e''.'+'¢'
og l,

Jlm-I

(10a)

H:(x,y) = l_e'o°t._-_p_, +. _R,,o++" )e+..,,,+tld.%
III • -411

(lOb)
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fory > hi2,and

Rm-_

x,cx,y)-
mll --ll

(11a)

(11b)

fory < hi2,where

a,--+to + 2n+t/d, ++o=ktn)sinOcos+, (12)

130)2 = _O')2 s I+,<:j)] > O. (13), _..,  [pm) + Ira[,...

In (10) and (11),IC¢, i Ch),Re+), R Ch),The+),and 7",(h)are, respectively,the complex

amplitudesof the z-components of the incidentand diffractedelectricand magnetic fields

inregions1 and 2.

2.2. Field Decomposition

Suppose h tends to infinity in Fig. 2, yielding a medium that is periodic in x and

infinite in y and z. If the general expression for the electromagnetic field in this infinite

medium is known, by imposing the interface conditions aty = - h/2 between this field and

those given in (10) and (1i), we can determine all the unknown field amplitudes.

V

W

For a z- and y-invariant medium, the following system of equations for the fields E_

and H_ can be derived from the original Maxwelrs equations

W_
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w

v

v

v

I.a,a,..2l,a[,}T_{_ j _ _,T_j_ .0. (14)

To determine the modal representation of the electromagnetic field we need to solve (14)

subject to the pseudo-periodic boundary conditions [13]

laod ,,,, .
E:(dl2,y) ,, • ''°aE:(-dl2,y), Hz(dl2,y) l • -:t-d/2,y),

o_.: ,... aE, os, ,.,. o.: (15)
---_(dla,y) ", ---_(-d/2,y), ---_-(dl2,y) - -_-(-d/2,y).

In addition, we also need the interface conditions for the fields and their derivatives at the

medium discontinuities. However, the burden of mentioning the interface conditions can be

relieved if we understand Maxwelrs equations in the sense of distn'bution [13].

Equation (14)isa coupled system of equationsforE, and H z,whose directsolution

_seems tobe difficult.However, bythe followingfielddecomposition,itssolutionissimplified.

In a z- and y-invariantmedium, an electromagneticfieldissaidto be Ex (H_.)ifthe x-

Let the superscript(e)denote the Excomponent of itselectric(magnetic)fieldvanishes.

field,and (h) the H_. field.Then from (9)

a E(,) 8. (,)
k.-_ , ,_,_,,_ - o,

kz a H_] a-_ , - ,,,o_,-,

(16a)

(16b)

In Appendix A, we prove that any field (E, ,H:) T, where superscript T signifies matrix

transpose, satisfying (14) and (15) can be uniquely expressed as a sum of an .E± field and
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an H± field, and these two component fields satisfy (14) and (15) independently. Thus the

task of solving the vector-valued boundary-value problem (14) plus (15) is reduced to two

independent scalar ones to be derived below.

g

Using (16a) to eliminate H_ from the first equation of (14), and using (16b) to

eliminate E z in the second of (14), we obtain,

a(1 aE(,) ) _E(o) £=_(,)

C -- +-- + =0.
e_ 0y 2 z

(17a)

(l"Po)

In these two equations, the electric field and the magnetic field are no longer coupled.

Actually, these two equations are identical to the equations for the TE and TM polarized

fields in classical mountings [5-8], provided that _ is replaced by _.

Q

W

The symmetry exIu'bited by (17a) and (17"o)with respect to E: (') and H: (h) and with

respect to e and p suggests that they can be rewritten as

a_Lo_a_ ) _2

where, and henceforth, s - e, h, and

F;'-e;+ o<',-

Let G (') denote quantities complementary to _') such that

(18)

Then, (16a) and (16b) become

o (k) "e(x). (19)

GC.) = H(,) G(h). _(*) (20)
"-Z _ mg ,

w

w

g
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V

v

0 _ B(a) ,9F¢O, (21)
a,

where

8(') = - I, O(k) - I. (22)

The new notations introduced in (19), (20), and (22) allow the Ea. and Ha. fields to be

treated identically in the rest of this paper.

V

V

Let a trial solution of (18) be

Fm(x,y) = urn(x) comfy).

Then the standard procedure of separation of variables leads to

o(')d-_-II--L-_u_'))+ (,_2-_.(')a)u('):O,dx_ om

where k o) is a constant.

together pose a boundary-value problem which is considered in the next section.

(23)

(24)

The differential equation (24) and the boundary conditions (15)

2.3. The Boundary-Value Problem

In this sectfoh- and thenexCsection, for simplicity, we omit the superscript (s) in the

Let L be a differential operator defined by

L= od(l_ "_'_d) ÷ _2.

relevant quantities.

(25)

Then the boundary-value problem for determining the eigenvalues and the eigen-functions

of the modal fields is given by
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Lu = pU, I

u(d/2) = ei_du(-dl2),

u_(d/2) = e'*'ru_'(-d/2),

(26)

where a prime indicates the differentiation with respect to x, and

p = ).2. (27)

Let us now define an inner product (,) for any two integrable, complex-valued functions

u(x) and v(x) by

(28)f d/2 1 u(x) _(x) d#. ,
(u,v) =  -,Jn-ff 

where a bar indicates the complex conjugate. For a lossless dielectric grating (_(x) > 0, _(x)

> 0), it is easily seen that L is self-adjoint, i.e.,

(Lu, v) = (u, Lv). (29)

From the theory of ordinary differential equations [14], we know that the eigenvalues

determined by the boundary-value problem (26)are real and they for m a denumerable

sequence. Furthermore, the eigen-functions form a complete, orthonormal basis in the sense

that any continuous and piecewise differentiable functionf(x) satisfying the pseudo-periodic

boundary conditions in (26) can be expanded in the eigen-functions.

In order to embrace the most general cases, however, we assume that region 0 is

composed of two media of complex permittivities and permeabilities, i.e., the functions e (x)

....and _(x) are in gene-r_ Complex Valued. _ additi0n, we assume ao, _ind p0ssibly k_, to be

complex. (This is a minor generalization of the works of Ref. 5-9.) This permits us to apply m
V
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the current model to the homogeneous problem of grating diffraction [15]. In either case,

the operator L is no longer self-adjoint; therefore, the eigenvalues of (26) are no longer

necessarily real and the eigen-functions are no longer orthogonal and complete. In order

to be able to use the modal field expansions for the total field, it is necessary to consider the

adjoint of (26), which is defined by

L*g" = p'u+, /

u +(d12) " e+g'_. + (-d12). J
. "(d12) = ++;oa u "+'(-d12),

(30)

where the superscript + indicates the adjoint and L + is the differential operator adjoint to

L. It is easily seen that

(L.,v') - (.,L+v .) (31)

V

V

if

From the theory of non-self-adjoint boundary-value problems [14,16], we know that under

certain conditions, which (26) and (30) satisfy, two mutually adjoint boundary-value problems

have the following properties: (a) Both boundary-value problems possess an infinite number

of eigenvalues and the eigenvalues can be ordered such that

p; ,, _,., m =0, 1,2, .... (33)

V

v

(b) The eigen-functions {u,,,} and {u+}, are bi-orthonormal, i.e.,

4.

(.=,u.) = 8,,,.
(34)

(c) Any continuous and piecewise differentiable function f(x) satisfying the boundary
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conditions has a uniformly convergent formal expansion

/(x) - _ ff.,_.),=(x).
m=0

(35)

Hence, even for lossy dielectric or metallic gratings, it is still mathematically justified to

represent the total electromagnetic field in region 0 by a superposition of modal fields, as

has been done by Botten et al.

Incidently, the Rayleigh expansions (10a, b) and (lla,b) can be viewed as expansions

in basisfunctions

e,(x) = e _'Or. (36)

It is easy to verify that e,(x) are eigen-functions of (26) with L replaced by d2/d_. The

adjoint of this new boundary-value problem, with respect to a new inner product ( , )

(u,v) - j.dt2utx)
(37)

definedby

is (30) with L + again replaced by d2/dx z, and ................

are the adjoint eigen-functions.

'2(x)- _la._ (38)
d

2.4. Eigenvalues and Eigen.Functions

The explicit forms of the characteristic equation for determining the eigenvalues and

w

w
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eigen-functions can be most conveniently derived by taking advantage of the simplicity and

symmetry of e(x) and t_(x) given in (1). It is easy to verify that the following two functions

are two linearly independent solutions of (24)

°-.-zv___--T-sin-f2_lxl- , _lxl 2'
otY2

(39)

v 90 I

d!

!_',rtx, O<lxl<y,
¥x

o,'t,,+ 2 ,'2t, I- ' 5 < +'
(40)

v

where, for j = 1, 2,

2 +2 _ (41)
¥j "_j p.

Clearly, 9, is an even function and 90 is an odd function.

therefore given by

u(x) - Ago(x) + Bgo(X),

where A and B are arbitrary constants.

(42) gives the characteristic equation

The general solution of (24) is

(42)

Imposition of the boundary conditions in (26) on

(1 + _) 9,(dl2)

(I-_)q/,(al2)
=0,

(43)

where

Gi'o d_=
(44)
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It is obvious that when x - - i, i.e., in Littrow mountings for which the normal incidence
==

is a special case, A(O ) is a product of two factors. For general angles of incidence,

factorization of A(p) is impossible, and the explicit form of the characteristic equation is

I( o2Y......__I+ o,Y..___2)s/ny,d:siny_/ _ cosaod = 0 ' (45)cos-lid I cosy_£_ - _ °iV2 %Vl

This is a transcendental equation for p, whose solutions are, in general, complex numbers.

The eigen-functionsof (26),expressedinterms of @e and 'Po,are given by

i C cO.(x), Or K = + 1, too(d�2) = O,
u(x) = i C ee(x), 6" k = - 1, cO,(d/2) =O,

C [ ( 1 +x) ¢,,(d/2) cO.(x) - (1 -i¢) cO.(d/2) Co(z) ], else,

(46)

where C is the normalization constant. The eigen-functions of the adjoint problem (30) can

be simply obtained by replacing the relevant quantities in (39-46) by their adjoint

counterparts. It can be shown that for each eigenvalue, there is in general only one eigen-

function and accidental degeneracy of an eigenvalue can only occur in Littrow mountings.

Since the normalization constants C for u(x) and C ÷ for u+(x) are not individually fixed by

(34), we can demand _+ = C. Then it can be shown that

_(x) = K-lu(-x). (47)

This direct relationship between the two mutually adjoint eigen-functions is very useful in

the numerical implementation of the theory.

w

W

W

w
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2.5, Modal Field Representation

Since the basis functions {u,. (s)} are complete and bi-orthogonal in the sense stated

in 2.3, the general solution of (18) for FCOcan be written as

l=O

(48)

where

=."_cy)=o._x_y ÷b. rot.y, (49)

and a,,,0) and b,,,(0 are modal field amplitudes to be determined later. Substituting (48) into

(21) and integrating with respect to y, we obtain an expression for G 0),

o,',. _ x.%)_._c_), (50)
l=O

where

X_)(y) ]= t -b_, _=y + a= stn_=y
(51)

and

w_(x) = 1 k= 8_ d .v=)(x). (52)

(The integration constant that would appear in (50) can be shown to be zero.) Thus, by

(48), (50), and (A-l) we complete the derivation of the following modal field representation

of the total electromagnetic field in region 0:

n',(x,y) x'.'%-'."c,>J÷_o ,.,'.."cy_,,;"ooJ
(53)
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Before closing this section, we give the orthogonality relation between the vector-

valued E_. solution and Ha. solution. For this purpose, we define an inner product [, ] of

two vector-valued functions 9 and $ such that

[_,_] ,,:a12 T(-1/p 0 )_ _dt29 _ 0 lIE "_ da.
(54)

Let Cm Ce)- (u,,,re),Wrn(e))T, and 9,,+fh)= (wn+Ch),u+Ch))T. Then itcan be shown that

t,'.",,:J-0. (55)
m
W

2.6 Matching InterfaceConditions

Having obtained the expressionsof the electromagneticfieldsin allregionsof the

space,we are now ready to form the finalsystem of tinearequationsfordeterminingthe

unknown fieldamplitudesby applyingthe interfaceconditionsaty ffi- h/2. The interface

conditions are the following:

Ex. = Ez_, H_. " Hz_, (56a)

E_,. ,, Ex_, Hx" ,. Hz., (56b)

qll

U

w

where the subscripts _ indicate limits from above and below the interface respectively, and

from (9a)and (gb_,

i
(57a)

(57b)

qlD

Substituting (10a, b), (lla, b), and (53) into (56a) and (56b) and carrying out some tedious

algebra, we have, for the continuity of E z and H z at y = + hi2,

w
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and

Q

n-O

= + ax, ,(
mt -m

.E.o[('¢' 6"_')"_'c_)"(A_'"+ a m ÷

= _)eo(X) + _ J_,_Ob)e.(x) •

Nm -Q

(58a)

(58b)

V

For the continuity of E_ arid H z at y == - h/2, we have

and

For the continuity of Ex and H x at y = + h/2, we have

qlB

N m ._

(59a)

and

I

i

Finally, for the continuity of Ex and H_ at y = - h/2, we have

(59b)
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and

m il

m"O Im -_

_ _)_t,_*))e,(x). (59d)

In the above equations the unknowns are

and the restof the new notationsare definedin Appendix B.

equations(58) and (59)willbe consideredin section3.2.

(6o)

(61)

The numerical solution of

2.7 DiffractionEfficiencyand Polarization

Once/_(s) and _'(0are solvedfrom (58)and (59),R, fOand T,(')are givenby (61).

By virtueof (9a) and (9b),allquantitiesof practicalinterestcan be readilyexpressed in

terms ofR,0) and T,,p).Suppose the media inregionsI and 2 are Iossless,and the incident

plane wave isnormalized such that

 Co,>
_0)"-'_( '<', If*(*) 12 ÷ I_(" [1_j) l2) " 1. (62)

Then, the diffraction efficiencies for the reflected and the transmitted propagating waves of

order n are givenby

252
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rl_1_ = _J (63a)

and

- I I + pC2)[ _t0 is). (63b)

V

If the media in region 0 are also lossless, the energy balance theorem holds:

E _1, + E rl_ = 1, (64)
a al I

where n and n' run t_ough all propagating orders in regions 1 and 2, respectively.

In many applications involving conical mountings, it is very important to be able to

predict the states of polarization of the diffracted orders. Let us associate with a

propagating order having a wave-vector

two unit re.ors ,_n0") and p,O'_ such that

(65)

k_,/)
11

I_.._x_l k_
(66)

In (65) the plus sign is for j = 1, and the minus sign is for j = 2. The polarization of this

diffracted order can be described with the following two angular parameters [17]:

*..¢
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°. .
8o: -.,8 { 7 j.

(67)

where E,_ O) and E,_, O) are the s- and p-components of the electric field. (The notation a, 0_

should not be confused with at,, defined in (12).) It is a simple exercise to show that for a

diffracted wave in medium 1,

--_ rl "'I -1

(68)

The expression for a diffracted wave in medium 2 may be obtained from (68) by replacing

R. 0) by Tn0), superscript (1) by (2), and 0. (1) by- 0,, (2). 9

3. NUMERICAL ASP_

3.1 Solution of the Characteristic Equation

An efficient, reliable, and accurate numerical method for solving the characteristic

equation (45) is of vital importance to the performance of a computer program

implementing the modal analysis. Two very different numerical methods have been

employed. The method of Botten et al. [7,18] is a general one capable of finding all zeros

of an analytic function in a prescn'bed region of the complex plane. That of Suratteau et al.

[8] and Tayeb and Petit [9] is a problem-specific method that takes advantage of the fact

that (45) can be factored in Littrow mountings. Both of these methods systematically find

all eigenvalues of (45) in a prescribed region of the complex plane, and both of them

W

g
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V

perform well even for highly conducting gratings. As reported by the authors of the second

method, their method is as effective as the first method but requires significantly shorter

computation time. For this reason, we have decided to use the second method in our

..... numerical implementation of this work. For details of these numerical methods, the

interested reader is referred to the references cited above.

_w

V

V

3.2 Solutionof the FieldAmplitudes

Before embarking on the numericalsolutionof (58) and (59),we firstanalyzethe

compositionof theseequations.In (58)and (59)thereare eightequationsand eightsetsof

unknowns. The right-handsidesof theseequationsare expanded in basisfunctions{e,),

which are bi-orthogonalto theiradjoint{e,+).The left-handsidesare expanded in four

different sets of functions {u,,,(_)), (u,,,(h)), {w,,(c)), and {w,,(h)}. Of these four, as scalar-

valued functions, {u,,, (e)} and {u,n(h)} are bi-orthogonal to their respective adjoints, but not

to each other. The functions {win(e)} and {w,s (h)) are proportional to the derivatives of

{u,,,(e)} and (u,s(h)] , and they are not orthogonal to any other functions.

Equations (58) and (59) constitute a system of equations in known function

expansions with unknown expansion coefficients. Such a system can be solved by the

method of moments [19], which consists of three steps. First, a projection basis, i.e., a set

of linearly independent testing functions, is chosen. Then, both sides of the series expansion

equations are projected onto this basis by forming appropriate inner products with the

testing _nctions. This step eliminates tKex-dependence of the equations and produces an
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V

algebraic linear system of equations of infinite dimension. Finally, the linear system is

truncated to a finite order and its solution is obtained by the standard numerical techniques.

Since equations (58) and (59) are already expanded in terms of bi-orthonormal basis

functions, it is advantageous to choose the adjoints of these basis functions as the testing

functions so that the subsequent numerical solution can be simplified. For each of the eight

equations we have two convenient projection bases, {u +0)} and {e+}. Therefore, there can

be many different combinations of choices of projection bases for the overall system.

Following Suratteau et aL, a projection method in which the interface conditions for the z-

components are projected onto one basis and those for the x-components are projected onto

the other basis is caned a hybrid method. A projection method in which all interface

conditions are projected onto one basis is called a homogeneous method. For the case of

non-conical mountings, Suratteau et al. have proved that the numerical solutions resulting

from the hybrid methods satisfy the energy balance and reciprocity criteria automatically

(independent of the truncation orders) while those resulting from the homogeneous methods

do not. It can be shown that the above statement is also true in the case of conical

mountings.

w

qlw

U

w

In this paper, we adopt the homogeneous method utilizing the projection basis

{u+P)}, so that the energy balance and reciprocity criteria are not automatically satisfied.

Multiplying equations (58) by a+O)(x)/tT(*)(x), and equations (59) by a+P)(x), then integrating

over a grating period, and making use of the bi-orthogonality relation (34), we have the

w
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v

v

following matrix equations:

where

X

WY = UX + UI,

D Y = QX + PI,

(69)

(70)

,5(e) ,

g¢.,
, Y= , 1=

go,,

0

0

(71)

60,, is the Kronecker delta, and the rest of the matrices are defined in Appendix B. In (71).

each element of the column vectors is itself a column vector, and the elements of X and Y

are related to the unknown field amplitudes listed in (60) and (61). The matrix D in (70)

is diagonal, so vector Y can be expressed in terms of X without numerical matrix inversion.

Substituting the expression of Y into (69), we have

(WD'tQ - U)X = (U - WD'tP)I. (72)

This is the final linear system of equations from which we numerically determine the field

amplitudes.

In order to solve the linear system (72) on a computer, we unavoidably have to

truncate the matrices. We designate N as the total number of terms retained in Rayleigh

expansions (we truncate the Rayleigh expansions symmetrically with respect to the zero

diffraction order) and M as that retained in the modal expansions. The integers N and M

are called the truncation orders. It is easily seen that for the solution of (72) to be well
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(neither under- nor over-) specified, the two truncation orders must be the same. Thus, the

matrices W, U, P, Q, and D in (72) are 4N by 4N square matrices.

4. NUMERICAL EXAMPLES

In this section we present some numerical results. The computer program is written

in Fortran 77 and double precision is used for real and complex arithmetic. For the special

case of non-conical mountings, the program has been checked using published data with

good agreement. For the general case, it meets the energy balance and reciprocity criteria

with reasonable accuracy. Table I tabulates TE and TM diffraction efficiencies of a metallic

grating in a non-conical mounting. The data of Botten et al. are taken from Table I of Ref.

6. Note that Botten et al. adopted a hybrid projection method that allows unequal

truncation orders N and M. Clearly, the agreement is very good, especially for the TE

polarization.

To date, there is no numerical data, especially data of the polarization parameters,

for non-perfectly conducting lamellar gratings in conical mountings available in the literature;

therefore, we present some original data in the rest of this section. Listed in Table 2 are

diffraction efficiencies (n), polarization angles (a,6), and diffraction angles (0,_) of a

dielectric grating in a conical mounting (the parameters are listed in the table caption).

Note that the incident plane wave is right-hand, circularly polarized. Listed in Table 3 are

diffraction efficiencies (r0, polarization angles (a,6), and diffraction angles (0,¢) of a highly

conducting grating in a conical mounting. The incident plane wave is linearly polarized with

W

W

m
w

W
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equal s and p component amplitudes. In both cases, the truncation orders are chosen to

ensure that the accuracy of the data is better than one percent (see discussion below).

v

V

In Figs. 3a, 3b and 3c we show the change of diffraction efficiencies r? and

polarization angles a and $ of a small period dielectric grating as the incident azimuthal

angle 0 sweeps through the first quadrant. The incident plane wave is always p polarized

and it strikes the grating from the optically denser medium at a polar angle greater than the

critical angle (for total internal reflection). This configuration is reminiscent of what occurs

in a planar waveguide grating coupler for a TM polarized guided-wave [20]. The reflected

and the transmitted negative first orders pass off at about 0 = 370 and 0 = 60 °,

respectively. It is evident that as soon as ¢_ is nonzero, the diffraction orders become

eUiptically polarized. The two first orders are nearly circularly polarized at 0 - 20 °. Also,

the senses of polarization of the two first orders remain right-handed throughout the angular

range of their existence.

Next, we illustrate the excellent convergence rate of the modal method.

purpose, we define a measure of error A_ as follows

For this

(73)

where fN stands for any one of the physical quantities, such as a diffraction efficiency or a

polarization angle, computed with truncation order N, and f = fN., where N* > N is an

integer. Iff stands for the sum of the diffraction efficiencies for a lossless grating, f = 1.0.
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Roughly speaking, the negative of AN gives the number of correct significant digits in the

numerical results.

Fig. 4 shows the convergence of the sum of the diffraction efficiencies and the

efficiencies of the negative first orders in reflection and in transmission for a dielectric

grating. The physical parameters are the same as those of Table 2. The truncation order

N varies from 11 to 61 in increment of 2, and N" = 63. It is evident from the figure that

better than one percent accuracy is achieved as soon as the truncation order is greater than

11. The convergence is not monotonic. The large oscillation in the convergence sequence

of the reflected order is probably due to the smallness of the diffraction efficiency (see row

3, column 2 of Table 2). If we make a low order polynomial fit of each set of the data in

the figure, the three resulting curves will have more or less similar shapes and close

locations. This implies that the energy balance criterion can be used as a good accuracy

indicator, thanks to our choice of the homogeneous projection method.

w

W

Fig. 5 shows the convergence of the diffraction efficiency and diffraction angles a and

8 of the negative first order of a metallic grating. The physical parameters are the same as

those of Table 3. The truncation order N varies from 11 to 69 in increment of 2, and N" =

71. Since now the grating is metallic, the convergence in this case is, as expected, slower

than that of Fig. 4. However, better than one percent accuracy can still be achieved with

a truncation orders of 40 or greater.

w

qlr

w
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v

As the authors of Ref. 5-8 have shown, one of the unique features of the modal

method is that it works very well even for deep, highly conducting gratings. This feature is

also true for the extension of the method to conical mountings as developed in this paper.

This is understandable, since the fundamental analytical and numerical issues for conical and

non-conical mountings are essentially the same. For the sake of saving space, however, we

will not provide any numerical evidence here.

5. SUMMARY

In this paper, we have extended the rigorous modal method of Botten et aL to the

case of conical mountings. A crucial step in accomplishing the extension is the field

decomposition discussed in section 2.2 and Appendix A. The field decomposition reduces

the vector-valued boundary-value problem given by (14) and (15) to a scalar one given by

(26), thus tremendously simplifying the subsequent analysis and allowing the previous works

of Botten et aL and Suratteau et aL be used here. The completeness and orthogonality of

the modal fields in the corrugated region are carefully established. The computer program

implementing the extended modal method can treat a plane wave of arbitrary angle of

incidence and polarization. It converges very well for highly conducting grating materials

and very deep grating grooves. We have included some original numerical data of both

diffraction efficiencies and diffraction polarizations for conical diffraction configurations.

The mathematical formulation presented in this paper has been kept general. In fact,

the explicit x-dependence Of e(x) and/_(x) given in (1) is not used, except for the derivation

v_j
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of the characteristic equation and the eigen-functions in section 2.4. Therefore, the

formulation is valid for any periodic e(x) and/_(x). However, it is precisely the simple x-

dependence of e(x) and _(x) in (1) that makes the easy derivations in section 2.4 possible.

For any other permittivity and permeability variations, the solutions for the eigenvalues and

eigen-functions become very complicated, and the modal analysis quickly loses its advantages

over other grating methods.

U

W

The present analysis can be easily extended to treat gratings of arbitrary groove

shapes and waveguide gratings with a number of uniform layers above and below the

corrugated region. These extensions will be the subject of a future paper.
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7. APPENDICES

7.1 Appendix A

Theorem:

Any solution of (14) and (15) can be decomposed such that

where (Ez(O, Hz(0) T and (Ez O) , Hz(h)) T " •

(A-l)

are E± and H.L, respectively, and they satisfy (14)

qll

qlP

m
w
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%..]

V

v

V

v

and (15) independently.

Proof:

The decomposition (A-l) is, in general, unique.

Since there is no explicit y-dependence in (14), any solution of (14) is necessarily of

the following form

e,.x(x,y) }

where

Ea(x,y)H_(x,y) ) =e'x'[ _x(x)fix(x) )"

Substituting (A-3) into (14), and eliminating the y-dependence, we have

k, _2

(A-2)

(A-3)

ko G(dx_2) =0. (A-4)

e V_

Equation (A-4) is a linear, tw_ensio_al vector-vaiuc_d, second-order ordinary differential

Suppose (Ezx, Hzx) r is E.It, therefore, has four linearly independent solutions.

t 1 6, d [x(x). (A-5)
nx(x)= t;t_k odx

equation.

Then, from (16a)

v

Substitution of (A-5) into (A-4) results in two second-order equations for _x(x). These two

equations are not independent; one can be derived from the other. Thus, we have two

linearly independent solutions of (A-4) that satisfy the Ea. condition (16a). Similarly, if we

demand (E:xIHzx) r to be Ha., then ........................
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_(x) = iX _ko'_ vlx(x)'
(A-6)

and we have two linearly independent solutions of (A-4) that satisfy the Ha. condition (16b).

Clearly, the solutions of Ea. type and Ha. type are linearly independent.

solution of (A-4) has the following form

/ / / r'/ /'/_.(x) (t) u_) (e) u_'2 _(h) _(h) "xz (A-7)
÷ ÷

= + C_ ( (*) c)'l (k) c)'2 (/0 '

where cu (_), l ffi 1, 2, s = e, h, are constants, (uu(_), vu(_)) r and (vu (h), uu(h)) T are E- and H__

solutions of (A-4) respectively. So, the decomposition (A-I) is always possible.

Therefore, any

g

U

Next, we impose the pseudo-periodic boundary conditiom (15) on the general

solution (A-7). This leads to the following characteristic equation

=0, (A-S)

where

U_ ) . u_>(d/2 ) - et%a u_( -d/ 2),

.   Cd/2)- ,
U_t = u_f(d/2) - e'=*augf(-d/2) ,

/ Or)/
= vxt (all2) -e+'*'tv_¢(-d/2).

(A-9)

W

w

W

i
W

By elementary row manipulation and making use of (A-5) and (A-6) for the Ea- and H:
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solutions, it can be shown that the two off-diagonal two-by-two matrices in (A-8) can be

made zero. Therefore, the Ea. and Ha. solutions of (A-4), and hence those of (14), satisfy

the boundary conditions (15) independently.

v

Suppose the decomposition (A-l) is not unique. Then we may have a decomposition

of the zero field into two non-zero orthogonal modal fields. Furthermore, each of these

=

fields satisfies both the E± and the Ha. conditions simultaneously. However, this leads to

kzZ + X2 _ 0, a condition which is, in general, not true. This completes the proof of the

theorem.

7.2 Appendix B

As in the main text of the paper, j ffi 1, 2, and s = e, h. In (58) and (59)

(B-l)

(B-2)

For the sake of clarity, the matrices in (69) and (70) are expressed in block forms,

followed by th e definitions of each sub-matrix.

W z

1 1 W (')A(k) Ir/.) B(h)

1 - I - I_ ")A ¢*) 11/(")BO')

l_h) A (') WOi)B ¢') 1 1

- W'_tOA_') W (h) B c') 1 - 1

(B-4)
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v

U

U o

0

0

0

0

U(,)

0

0

0

0

U(h)

0

0

0

0

U(k)

(B-5)

W

D=2

A c') 0 0 0

0 B c') 0 0

0 0 A o') 0

0 0 0 B (k)

(8-6)
B

Q

0 ¢') 0 0 0

0 0 ¢'> 0 0

0 0 0 a) 0

0 0 0 0 °k)

- ¢Il)

- zl0 a

,:' 8.,

Ct_, = a. 8_.

u_ -(,..,_%,.

-

(B-7)

B_ - By 8.. (B-S)

13(n = 13_ 8. (B-9)

-o) .o (B-IO)u_ - (e..,.).

W(2 . (,) . -(k). (B-11)= (W. ,u,, )l,"

To get the expression for matrix P, we only need to reverse the sign of 8 (') in (B-7). In (B-

10) and (13-11) the inner products are those defined in (28) and (37), and the subscript s

indicates that the weight function o ¢') should be used in the integral. By using (55) and (47),

it can be shown that the two sub-matrices in (8-11) are related such that

W(_ + W(2 = O. (B-12)

Hence, there are five sub-matrices involving the eigen-functions to be calculated. It can be

W

u

w

i
I

i

i
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shown that these sub-matrix elements can be expressed in terms of the left and right limits

of u,,,O) and its derivative at ± di/2, if the periodic medium is characterized by (I).

Since w,,,O) and %03 are proportional to k_, the matrices defined in (B-4) through (B-

7) become block-diagonalized when kz = 0. Of course, this means that in non-conical

mountings, E z and H z are de-coupled.

8.

I.

.

.

,

.

.
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TABLE CAPTIONS

1 Numerical comparison with the results of Botten et al. for a metallic grating in a non-

conical mounting. Parameters: d - 1.0 _m, d t = 0.4001/_m, h - 0.1 _m, ¢o) -_ E(2)

- _1 - 1.0, _z -" (1.5+il.0) z, k0 = 0.8/_m, 0 - 11.5 °, ¢_ = 0 °. Truncation orders:

Botten eta/., M = 20, N -- 51; this paper, M = N - 31.

0 Diffraction efficiencies (r/), polarization angles (a,6), and diffraction angles (0,_) of

a dielectric grating in a conical mounting. All angular values are in degrees.

Parameters: d = 1.0 pm, d t - 0.5/_m, h = 0.5 pro, e (t) = e 1 - 1.0, e (z) = e z = 2.25,

k o = 0.5 pro. Incident polarization: a - 45 °, _; = 90 °. Incident angle: 0 = ¢_ = 45 °.

Truncation orders: M = N = 31.

o Diffraction efficiencies (rl), polarization angles (a,a), and diffraction angles (0,¢0 of

a metallic grating in a conical mounting. All angular values are in degrees.

Parameters: d = 1.0/_m, d 1 = 0.5 /_m, h = 1.0 _m, E (1) = e_ = 1.0, _(2) = _z =

(0-1+i5.0) 2, _.0 = 0.5 _m. Incident polarization: 0t = 45", 6 = 0 °. Incident angle:

8 = 30*, _ - 45*. Truncation orders: M = N = 51.
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FIGURE CAPTIONS

1. The coordinate system for a lameUar grating in a conical mounting.

2. The geometry of a lamellar grating.

o

6

.

Diffraction efficiencies r/(Fig, a) and polarization angles a (Fig. b) and 6 (Fig. c) of

a dielectric grating versus the incident azimuthal angle _. The polarization angles are

measured in degrees. Parameters: d - 0.3 _m, d 1 -- 0.15 _m, h - 0.15/_m, _(_ =

E1 - 1.5, E(z) = ez - 1.0, _0 - 0.5 _m. Incident polarization: a - 0°. Incident polar

angle: e - 60 °. Truncation orders: M = N - 45.

Illustration of convergence for a dielectric grating. Round dots: sum of all diffraction

efficiencies. Hollow squares: diffraction efficiency of - 1 order in reflection. Hollow

triangles: diffraction efficiency of- 1 order in transmission. The parameters are the

same as for Table 2.

Z

Illustration of convergence for a metallic grating. Round dots: diffraction efficiency

of -1 order. Hollow squares: polarization angle a. Hollow triangles: polarization

angle 6. The parameters are the same'as for Table 3.
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